
 USING SmartBASIC 2.0
 by Wa6Msx

 Basic 2.0 differs considerably from it's predecessors. Many if not all
of Basic 1's faults have been identified and eliminated, and several new
features have been added.

 The aggravating "growing" DATA and REM LINE Bug has been fixed! And in
fact old BASIC 1.0 files with sloppy DATA and REM lines can be instantly
cleaned up by Booting Basic 2.0 and then LOADing and SAVEing the old file.

The utility of sequential Tape or Disc Files has been considerably
improved by fixing the "Backup" Bug. A Backup Copy of saved files is NO
LONGER MADE after APPENDing them. All that's necessary is that the APPENDED
FILE be the LAST PROGRAM on the Tape or Disc. Then there will be no more
rapidly filled up tapes with useless copies, and the SEQUENTIAL FILE feature
of Basic can be used directly without resorting to Machine Language routines
to overcome BASIC 1's Limitations. Also, DELETEing Programs in Basic 2.0 now
actually FREES that space on the Tape or Disc for OTHER PROGRAMS. To be
reliable though Programs should be DELETEd beginning with the LAST PROGRAM
SAVED and then inward toward the FIRST Program. To DELETE all programs on a
tape such as either BASIC tape that can't otherwise be INITiated, just be sure
that the LAST PROGRAM DELETED is the FIRST PROGRAM on the Tape or Disc. That
will result in a virtually INITiated Basic Tape or Disc with the Full Program
Space Available for new programs.

 The Line Buffer has been enlarged to now allow a line length up to 255
Characters for direct compatibility with MicroSoft Basic. Line Editing is
easier too. The Insert and Delete Keys now work in Basic 2 as well as
SmartWriter and the Clear Key Erases the Entire Line. There is another
change that really IS an improvement, but takes some getting used to. When
editing previously written lines if you should make an Error, the ERROR is
ACCEPTED and the Original Line is LOST. This line is then printed on the
screen with the "Sad Face" character proceeding it. (This Sad Face as well
as the Syntax Error "^" and run time Error Messages are always accompanied by
the Bell Sound). It must then be re-written. Sad Face lines will stay in
the listing until changed, and may even be SAVEd with the program, but will
Break the program when Run, if between sequential lines. This differs
considerably from Basic 1.0 where any errors in editing were REJECTED and the
original line was returned UNCHANGED. It's good insurance to copy lines
before editing them. You'll then have an unchanged line to fall back on if
you make an error and lose the line.

 There is virtually NO imposed POKE LIMIT in Basic 2.0, you can poke up
to FEBF (65215). POKEs are rejected above that limit only to prevent Poking
into the DCB's which could be catastrophic. Basic 1.0 Programs with the old
POKES TO 16149 and 16150, used to re-set it's Poke Limit SHOULD NOT BE USED
with Basic 2.0. These pokes are in a different part of the Basic 2.0 machine
language and will blow-up the Basic Boot and require re-booting. This damage
may not be immediately apparent on all functions and I suspect this is one of
the reasons for the reports that Basic 2.0 seems "incomplete".

This is true with the old Basic 1.0 COLOR POKES as well. DON'T use a
program written for Basic 1.0 that changes the Screen Colors. These programs
MUST be modified first.

 The NEW COLOR POKES ARE:

POKE 17184 <0-15> for the Border
POKE 17240 <Normal Text *16 + Screen>
POKE 17251 <Inverse Text*16 + Inverse Background>

 I have written a 6 Block program for the Public Domain called 1-2 Color
that may be used unmodified with either Basic to set all the Basic
Text-Screen Color Pokes. It identifies which Basic is booted and pokes the
correct addresses.

 The Basic 1.0 Graphic Color Pokes SHOULD NOT be used with Basic 2.0 as
well. I have not identified the New Graphic Pokes yet (April 86). Perhaps
someone else has this information.

 A small but significant improvement (as it seems to point up the level
of effort put into the revision) can be seen by running 1-2 Color in both
Basics. You'll notice the cursor is visible in Basic 1.0, even tho not
necessary since no normal keyboard inputs are required. In Basic 2.0 the
cursor is transparent unless waiting for input. The program could have poked
a transparent character for the cursor in Basic 1.0, but if the program was
aborted with Control C, without restoring the cursor, it would remain
invisible. All this foolishness is unnecessary with Basic 2.0. AND ONCE
AGAIN ANY Program that POKES 16953 to Alter the Cursor in Basic 1.0 MUST NOT
BE RUN Before Deleting These Pokes!

 The Printer will now start to Print from the Top of the Screen by
Pressing the PRINT key on the Keyboard. It can also be STOPPED EARLY by
Pressing CONTROL and C together. The Printer now Prints any INVERSE
CHARACTERS in the text that have normal characters on the Daisy Wheel, as
NORMAL CHARACTERS. Also the Printer can be made to print bi-directional, as
with Basic 1.0, with CHR$(15). This feature was useless however on Basic 1.0
since the printer would lock up and continue printing the same 80 characters
forever. This bug has been fixed in Basic 2.0 and the Printer will stop and
return control to the program. There is also a NEW SCREEN PRINTING FUNCTION
that requires a POKE. To display ANY of the 256 characters including "control
characters" on the screen in the TEXT Mode, at the current cursor position,
POKE its ASCII number into 16771 then CALL 16770. The following Line will
show them all.

5 TEXT: FOR i=0 TO 255: POKE 16771,i: CALL 16770: PRINT " ";:NEXT.

 The Basic 2.0 Source File or Program on the Disc/Tape takes up 49
BLOCKS. SmartBASIC 1.0 only required 28 Blocks. ALL this extra code
includes a revision of the EOS. This NEW EOS Revision-7 is Loaded into RAM
instead of the ROM Revision-5 resident in ADAM that was used with Basic 1.0.
This is where the New File Handling Routines come from. Fortunately for the
Pokers amongst us the EOS JUMP TABLE is at the same address in RAM and even
most of the new routines are simply displaced by a few blocks. Caution is in
order however. It's wise to investigate the area of ANY POKE used in your
favorite Basic 1.0 Program before attempting to RUN it!

 It is also worth noting that even with all this extra source code,
Basic 2.0 requires 447 bytes (1/2 Block) LESS memory so that you have
additional room for Basic or Machine Code programs even when in STDMEM. Basic
2.0 PRINT FRE(0) yields 26401 as opposed to Basic 1.0's 25954. (Each
following NEW). HIMEM default is the same at 53632 but the extra space is
revealed by Basic 2.0's default LOMEM of 26960 as opposed to Basic 1.0's
27407. Note too that now BOTH HIMEM AND LOMEM can be set.

 Even Block ZERO didn't escape revision. This is the "Boot-STRAP LOADER"
and now includes a test for the presence of the 64K Expansion Board as well
as a Memory Test of it. Also code to reset the Default Drive to be the
Current Drive (the Drive that you're Booting Basic 2.0 from). This means
that unspecified Reads or Writes will be to IT and that HELLO will Self-RUN
as Expected.

 Basic 2.0 Also correctly INITilizes Discs with 160 Blocks. And BLOCKS
REMAINING is now re-calculated each time CATALOG is requested, from the total
of Those Programs NOT DELETED.

 NEW COMMANDS

MERGE This command is used like LOAD but does not NEW the program space, so
that favorite routines may be stored separately and MERGEd with any existing
program. The MERGEd lines will replace any existing lines numbered the same,
or will simply be added to the program if numbered differently.

EXTMEM This command accesses the 64K expansion board for additional basic
program space. NOTE that when EXTMEM is entered the BASIC 2.0 Tape or Disc
MUST BE IN THE CURRENT DRIVE. The Tape or Disc is then Accessed ONLY if the
64K Expansion was tested as Present when Basic 2.0 was Booted. If this is so
the Screen will Blank while the Memory Map is reconfigured, then the Title
"Coleco SmartBASIC 2.0" will reappear.

 PRINT FRE(0) will confirm that your new Expanded Workspace is 90646.
(90656 if proceeded by NEW). HIMEM And LOMEM can now be set anywhere in this
new workspace but be careful with the values. Reports are that there is no
Error Trapping on LOMEM and HIMEM values while in EXTMEM AND AN ILLEGAL ENTRY
WILL CRASH BASIC. Note too that one drawback that comes with all this extra
room is slower program execution.

STDMEM This command returns you to the normal Basic Map. Once Again the
BASIC 2.0 TAPE OR DISC MUST BE IN THE CURRENT DRIVE WHEN STDMEM IS INITIATED.
The Tape/Disc is Accessed Again and the Basic Map is configured as "normal".
Anything in the Workspace is LOST. PRINT FRE(0) reports 26391 (26401 if
proceeded by NEW). (It might prove simpler just to ReBoot the tape or disc
from the start)

COMMANDS PDL(1) and PDL(2) in BASIC 2.0 have been INTERCHANGED as referenced
to BASIC 1.0. PDL(2) now yields the VERTICAL POSITION for Controller #1
(0-256) and PDL(1) now yields the HORIZONTAL POSITION for Controller #2. ALSO
PDL(15) For the #1 controller Or PDL(14) For the #2 Controller now returns an
Update on the Position of the SPINNER, used in the SUPER ACTION CONTROLLER.

 BASIC 2.0 SPRITES

 Sprites as implemented in Basic 2.0, are really SHAPES each consisting
of 32 Bytes of Bit-Mapped Memory and can be put anywhere on the screen in ANY
of the Display Modes and EACH in any of the 15 HCOLORS! EACH sprite is
defined on its OWN SCREEN PLANE, easily visualized as 32 layers of
transparencies. That's why each can have it's own color AND that they CAN
overlap. The Basic 2.0 Source tape/disc comes with Sprite 1 and 2 already
defined. Their 64 bytes are stored in page 0 at 00C0 (192) thru 00FF.
Sprites that you define may be stored here or anywhere else in free memory
space like any other machine code. Poke 16786 (Low Byte) and 16787 (Hi Byte)
to tell the sprite routine where YOUR Sprite Table begins. Before you can
use the Default Sprites or any others you must also poke 16788 with a 1. This
sets the Sprite Flag and tells the routine that Sprites HAVE been defined.

 In "normal" Graphics, Basic 2.0 XDRAWS with Transparent to assume the
Background Color (instead of simply Black in Basic 1.0). The Sprite routine
uses THIS XDRAW to AUTOMATICALLY Erase That particular Sprite if you Draw it
somewhere else on the screen. Needless to say this makes for extremely simple
animation routines. To see the two Sprites provided enter this line. 5
TEXT: POKE 16788,1: HCOLOR = 3: DRAW 1 AT 120,70: DRAW 2 AT 120,120. I'm
sure they'll be a pleasant surprise.

 For more surprises try the following short program.

4 REM BASIC 2.0 SPRITE DEMO
5 TEXT:POKE 16788, 1
10 VTAB 3:HTAB 5: PRINT "Remember Text Can ALSO"
15 HTAB 8: PRINT "Be On The Screen"

20 a=4: b=236: c=1: d=1
25 HCOLOR =3:FOR i=a TO b STEP c:DRAW d AT i, 75:GOSUB 35:NEXT:IF b=4 THEN 40
30 a=236: b=4: c=-1: d=2:GOTO 25
35 FOR t=100 TO 0 STEP -1:NEXT: e=RND(-e):DEF FN f(e)=INT(1+e*RND(1)):
 HCOLOR = FN f(15):RETURN
40 VTAB 6:HTAB 4: PRINT "Wanna See It Again? y/n ":GET a$
45 IF a$="y" OR a$="Y" THEN VTAB 6: PRINT:GOTO 20

 After you've tried the above program then try the following one. This
Program replaces the existing 2 sprites with 2 new ones. The original ones
are erased so if you want to use them again you'll have to re-boot Basic 2.0

3 REM NEW SPRITES DEMO FOR BASIC 2.0 ONLY
6 DATA 139,217,169,169,137,137,139,0,139,137,137,249,137,137,139,0,165,37,41,
 49,41,37,165,0,161,33,33,33,33,33,189,0
7 DATA 209,0,0,226,0,0,229,0,47,40,72,143,72,40,47,0,85,0,0,170,0,0,85,0,120,
 68,68,12,0,80,72,68,0
8 FOR x=192 TO 255:READ d:POKE x, d:NEXT
9 TEXT:POKE 16788, 1
10 VTAB 3:HTAB 5: PRINT "Remember Text Can ALSO"
15 HTAB 8: PRINT "Be On The Screen"
20 a=4: b=220: c=1
25 HCOLOR =3:FOR i=a TO b STEP c:DRAW 1 AT i, 75:DRAW 2 AT i+16, 75:
 GOSUB 35:NEXT:IF b=4 THEN 40
30 a=220: b=4: c=-1:GOTO 25
35 FOR t=100 TO 0 STEP -1:NEXT:RETURN
40 VTAB 6:HTAB 4: PRINT "Wanna See It Again? y/n ":GET a$
45 IF a$="y" OR a$="Y" THEN VTAB 6: PRINT :GOTO 20

 MAKING YOUR OWN SPRITES

 If you have SmartLOGO then you can very quickly define your own sprites
using the Logo SHAPE EDITOR. LOGO Shapes are defined in exactly the same way
as SmartBasic 2.0 Sprites. This is described fully in Chapter 6 of the Logo
Reference Manual. The simple procedure is: Boot the SmartLogo Program and
answer NO to the Demos. Then Enter after the Logo Prompt ES 32 (RTN).

LogoShape 32 is normally Blank so an empty 256-Block Box 16 blocks High by 16
Blocks wide will fill the screen. (The Turtle Shape, actually another Sprite
will be visible in the center of the screen but will not affect the following
procedure. If it's objectionable then it can be HIDDEN first following
instructions detailed in the Logo Manual).

 To FILL a Block move the Logo Cursor to that block and Press HOME.
Pressing Home when the cursor is already in a FILLed Block will ERASE that
Block and return it to Transparent. Remember that even though Black is used
to FILL blocks in the Logo Editor these may be later defined as any Color. If
you ran program #2 above then you saw that Sprites Can Also Be configured to
look like Text. These Text Characters should each be 7 blocks Hi by 5 or
less Blocks wide with a space under neath and to the right. This will allow
a sprite to contain 2 lines by 3 characters each. For 2 Lines of Text
several sprites can be defined and placed side by side.

 After you have your first Sprite Defined the way you want it Press
SMARTKEY [VI]. This will Save its Shape in the Workspace (Its not really
necessary to save it on the tape). The Editor will disappear and when the
Logo Cursor returns Enter MAKE "SPRITE GETSH 32 (RTN). And then Enter PR
:SPRITE (RTN). The 32 decimal numbers that define a Sprite will be listed in
their correct order. Just copy them onto a sheet of paper. If you want to
define more sprites you can use Shape 32 over or any other Of the 60
LogoShapes. Any changes that you make will not be permanent unless you
follow the procedure to make them so detailed in the Logo Instructions. After
you have the list of 32 numbers you can copy these into Program #2 above in
place of one of the DATA Lines. When you run the program your Sprite will be
displayed.

 BIT-MAPPING YOUR OWN SPRITES

 If you don't have the Logo Program or if you just want to learn how to
define your own sprites by plotting a bit-map try the following simple
procedure.

 On a sheet of graph paper enclose a 256 block square, 16 Blocks high By
16 Blocks wide. Starting at the TOP RIGHT corner, outside the square along
the top line, from Right to Left write above each column:
1,2,4,8,16,32,64,128,1,2,4,8,16,32,64,128. Now starting at the Top Left
Corner, outside the square from Top to Bottom, Number each of the 16 Rows 1
thru 16. Now on the RIGHT Side, outside the square from Top To Bottom,
number these same rows 17 thru 32. Finally, in the Center of the Square Draw
a Vertical Line from Top To Bottom, starting between the numbers 1 and 128
along the Top.

 What you now have is a graphic representation of the 32 bytes in memory
that define a sprite arranged as they are displayed on the screen as two side
by side 16 Byte columns. Each 1/2 line of 8 blocks is an 8 bit Byte. Blocks
that you FILL assume the value of 1 and empty Blocks are 0. To easily
convert these Binary Bytes to the decimal numbers required by Basic just look
up at the top row of numbers. If a Block is FILLED, ADD This Number to the
Total for this 1/2 line Byte (Numbered 1-32). Empty 1/2 lines are 0. Write
these 32 numbers down in order and with a comma between each one and copy
them into either of the Data Lines in the 2nd Program above inplace of the
existing numbers. When you RUN the program you'll then see your own sprites
displayed.

 SmartBASIC V2.0
PEEKS, POKES and CALLS

 Compiled by Sharon McFarlane/NIAD

 --
 Location Function/Description Default/Range
 --

 153 FLASH Speed (1=Slowest/255=Fastest) 12
 259 PEEK to determine STDMEM=195 EXTMEM=210 -
 1121 Number of Prompt Fonts (1-2) 1
 1122 1st Left Line Margin Prompt 93
 1123 2nd Left Line Margin Prompt 0
 1594-95 LOMEM Pointer (lo/hi bytes) 0/0
 1628 SPEED Value 255
 1648 Highest Pokeable Address (lo byte) 144
 Value 255 increases poke limit to 65535 -
 1649 Highest Pokeable Address (hi byte) 211
 Value 255 increases poke limit to 65535 -
 11943 Value 208 corrects bug & allows 191
 removal of sprite once drawn (STDMEM) -
 12454 Value 208 corrects bug & allows 191
 removal of sprite once drawn (EXTMEM) -
 16771 Display any of 256 ASCII characters -
 including Cntl. characters in TEXT Mode -
 POKE ASCII value & then CALL 16770 -
 16781 Value of Current Storage Device -
 DISK#1=4 DISK#2=5 RAMDISK=205 -
 TAPE#1=8 TAPE#2=24 -
 16783 Text Window Color in HGR Mode 1
 16786 Pointer-Start of Sprite Design (lo byte) 192
 16787 Pointer-Start of Sprite Design (hi byte) 0
 16788 Displays pre-programmed Sprite #1 1
 Color MUST be defined first -
 16788 Displays pre-programmed Sprite #2 2
 Color MUST be defined first -
 16788 Leave Sprite Mode 0
 16789 Flag for version of SBasic 0
 0=STDMEM Non-0=EXTMEM -
 16939 HOME Key / Substitute any Value 32

 16957 Number of Lines to Clear (TEXT) 24
 A value of 20=clear 20 lines only -
 16957 Number of Lines to Clear (GR/HGR) 4
 16958 Number of Columns to Clear 30
 16959 Top Margin to Clear 0
 A value of 16=HOME/Cursor to Line 16 -
 16960 Left Margin to Clear 1
 17111 Current COLOR value (0-15) 255
 17184 Background Color in TEXT Mode 0
 17229 Value 200:TEXT corrects bug & allows 208
 sprites to appear in any sequence -
 17240 Text & Screen Color NORMAL TEXT Mode 240
 17251 Text & Screen Color INVERSE TEXT Mode 15
 17322 Start value # of Lines 23
 17323 Start value # of Columns 30
 17325 Start value of Top Margin 0
 17326 Start value of Left Margin 1
 17339 Value 227:CALL 17338 = Large Sprite 226
 Enlargement -
 17339 Value 226:CALL 17338 = Standard 226
 Sprite Size -
 17339 Value 225:CALL 17338 = Small Sprite 226
 Enlargement -
 17339 Value 224:CALL 17338 = Standard 226
 Small Sprite -
 17437 Value 0 stops Cursor blink 4
 24695 Background Color in GR/HGR(2) Mode 1
 24784 Text Window Color in GR Mode 17
 24847 Text & Screen Color in GR/HGR(2) Mode 240
 25360-78 Correct GR/HGR Color Table by inputing: 1
 FOR x = 0 to 15. POKE 25360 + x, x -
 POKE 25378 + x, x. NEXT x -
 25992 Value 32 sets up for Large Sprites 32
 25992 Value 8 sets up for Small Sprites 32

